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Correlations of Spin States for Icosahedral
Double Group
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The irreducible bases of the icosahedral double groups I8 and I 8h are explicitly
presented in their respective group spaces. Applying these bases to the spin states
. j, m&, we obtain a simple formula for combining the spin states into the symmetry-
adapted bases which belong to a given row of given irreducible representations
of I 8 and I 8h.

1. INTRODUCTION

Metallo-fullerene is a kind of fullerene cage with a metal atom or atoms
in the center of the cage. The study of the metallo-fullerene has attracted
considerable attention from physicists and chemists since Heath et al. [12]
showed that metal-containing fullerene could be generated. To classify its
electronic states in the case of spin–orbit coupling, especially for electronic
states with half-integer spin, one has to study the double group symmetry [2].

Recently, the character table and the correlation tables related to I 8h have
been presented by Balasubramanian [1]. The correlation tables can be obtained
from the character table using standard group-theoretical methods [11]. From
the correlation tables, states with a low angular momentum can be combined
by a similarity transformation into a state belonging to a given row of a
given irreducible representation of I 8. However, this becomes a tedious task
as the angular momentum is increased. Fortunately, the difficulty can be
overcome by using the irreducible bases in the group space of I 8. In the
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present work, we present a simple formula [see below (21)] to combine the
spin states into symmetry-adapted bases which belong to a given row of
given irreducible representations of I 8 and I 8h. Irreducible bases in the group
space of I 8 and combinations of the spin states are frequently used to study
vibrational and rotational problems in C60 [7].

From the viewpoint of group theory (ref. 11, p. 106), the group element
R plays the role of a basis in the group space, which is the representation
space of the regular representation. The number of times that each irreducible
representation is contained in the regular representation is equal to the dimen-
sion of the representation. One can obtain the new bases cG

mn belonging to
the m (n) row of the irreducible representation G in the left (right) action of
a group element by reducing the regular representation

RcG
mn 5 o

r
cG

rn DG
rm(R), cG

mn R 5 o
r

DG
nr(R)cG

mr (1)

where cG
mn are called the irreducible bases in the group space. Assume that

G is a point group, which is a subgroup of the rotation group SO(3); applying
the irreducible bases to the nonvanishing angular momentum states . j,r&, one
can obtain the combinations cG

mn. j, r&, which belong to the m row of the
representation G of the point group G,

RcG
mn. j, r& 5 o

t
Dl

tm(R)cl
tn. j, r& (2)

This method is effective for the study of both integer and half-integer angular
momentum states. The purpose of this paper is to obtain the irreducible bases
of the group space and give a simple formula for combining the spin states
into symmetry-adapted bases by applying those irreducible bases to the spin
states . j, m&. This paper is based on our previous work [8–10].

2. ICOSAHEDRAL DOUBLE GROUP

As shown in Fig. 1, the upper vertices of the icosahedron are labeled
by Aj and their opposite vertices by Bj (0 # j # 5). The z and y axes point
from the center O to A0 and the midpoint of A2B5, respectively.

The icosahedral group I has 6 fivefold axes, 10 threefold axes, and 15
twofold axes. One of the fivefold axes is along the z axis, and the rest point
from Bj to Aj (1 # j # 5) with polar angle u1 and azimuthal angles w(1)

j .
Rotations through 2p/5 around those fivefold axes are denoted by Tj (0 #
j # 5). The threefold axes join the centers of two opposite faces. The polar
angles of the first and last five axes are u2, and u3, respectively, and the
azimuthal angles are w(2)

j . Rotations through 2p/3 around those threefold axes
are denoted by Rj (1 # j # 10). The twofold axes join the midpoints of two
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Fig. 1. Icosahedron with Ih symmetry.

opposite edges. The polar and azimuthal angles of the first, next, and last
five axes are u4, w(1)

j , u5 and w(2)
j , p, and w(3)

j , respectively. Rotations through
p around those twofold axes are denoted by Sj (1 # j # 15). The angles ui

and w(i)
j are expressed as

tan u1 5 2, tan u2 5 3 2 !5, tan u3 5 3 1 !5

tan u4 5 (!5 2 1)/2, tan u5 5 (!5 1 1)/2, (3)

w(1)
j 5 2( j 2 1)p/5, w(2)

j 5 (2j 2 1)p/5, w(3)
j 5 (4j 2 3)p/10

SU(2) is the covering group of SO(3) and provides the double-valued
representations of SO(3). To classify angular momentum states with half-
integer spin, one has to extend the point group to the double point group,
following the homomorphism of SU(2) onto SO(3),

6u(n̂, v) → R(n̂, v) (4)

For SO(3), a rotation through 2p is equal to identity E, but it is different
from identity E8 of SU(2),

R(n̂, 2p) 5 E, u(n̂, 2p) [ E8 5 21 (5)

Similarly, a point group G is extended into a double point group G8 by
introducing a new element E8 with the properties

RE8 5 E8R, (E8)2 5 E, R P G , G8, E8R P G8 (6)

G is a subgroup of SO(3), and G8 is that of SU(2). For definiteness, we
restrict the rotation angle v to be not larger than p
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R(n̂, v) → u(n̂, v)

R(n̂, v 2 2p) 5 R(2n̂, 2p 2 v) → u(2n̂, 2p 2 v) 5 2 u(n̂, v) (7)

0 # v # p

The period of v for SU(2) is 4p. The element E8 is denoted by R in refs. 1
and 11 and by u in refs. 3–6, 13, 14 and G8 is denoted by G† in refs. 3–6,
13, 14.

The I 8 contains 120 elements and nine classes. There are nine inequiva-
lent irreducible representations for I 8: five representations A, T1, T2, G, and
H are called single-valued, and four representations E 81, E 82, G8, and I 8 are
double-valued. The row (column) index runs over integers (in a single-valued
representation) or half-integers (in a double-valued one) as follows:

A: m 5 0 E 81: m 5 1/2, 21/2

T1: m 5 1, 0, 21 E 82: m 5 3/2, 23/2

T2: m 5 2, 0, 22 G8: m 5 3/2, 1/2, 21/2, 23/2 (8)

G: m 5 2, 1, 21, 22 I 8: m 5 5/2, 3/2, 1/2, 21/2, 23/2, 25/2

H: m 5 2, 1, 0, 21, 22

where the subscript m is replaced by m when it is an integer, as in angular
momentum theory.

Actually, the group I 8" is the direct product of I 8 and the inversion group
{E, P}, where P is the inversion operator. According to the parity, the
irreducible representations of I 8" are denoted as Gg (even) and Gu (odd),
respectively. The character table of the double group I 8" is listed in Table 1
of ref. 1. In this work, we pay more attention to the icosahedral double group
I 8, which is studied in the following section.

3. IRREDUCIBLE BASES

The rank of I 8 is three. One can choose T0, S1, and E8 as the generators
of I 8. The representation matrix of E8 is equal to the unit matrix 1 in the
single-valued irreducible representation and 21 in the double-valued one. It
is convenient to choose the bases in an irreducible representations of I 8 such
that the representation matrices of the generator T0 are diagonal with diagonal
elements hm. In the I 8 group space, assume that the bases Fmn are the
eigenstates of left action and right action of T0,

T0Fmn 5 hmFmn, FmnT0 5 hnFmn (9)

where the constant h satisfies the equations
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h 5 exp(2i2p/5), o
4

m50
hm 5 0

p 5 h 1 h21 5 (!5 2 1)/2, p21 5 1 1 h 1 h21 5 (!5 1 1)/2 (10)

q 5 i(h 2 h21) 5 (!5p21)1/2, i(h2 2 h22) 5 qp

The bases Fmn can be readily obtained by the projection operator Pm (ref 11,
p. 113)

Fmn 5 cPmRPn, Pm 5
1
10 o

4

a50
h2ma(E 1 h25m E8)T a

0 (11)

where c is a normalization factor. The choice of the group element R in (11)
will not affect the results except for the factor c: The subscripts m and n
should be both integer or both half-integer. In the following, one can choose
E, S11, S5, or S10 as the group element R and obtain four independent sets of
bases F(i)

mn:

F(1)
mm 5

E 1 h25m E8

!10 o
4

a50
h2maT a

0

F(2)
mm 5

E 1 h25m E8

!10 o
4

a50
h2maT a

0S11

5
E 1 h25m E8

!10
(S11 1 h22mS12 1 h24mS13 1 h4mS14 1 h2mS15)

F(3)
mn 5

E 1 h25mE8

5!2 o
4

a50
h2maT a

0S5 o
4

b50
h2nbT b

0 (12)

5
E 1 h25mE8

5!2
{(S5 1 h2mR2

5 1 h22mT 4
1 1 h2mT4 1 hmR4)

1 h(m2n)(S4 1 h2mR2
4 1 h22mT 4

5 1 h2mT3 1 hmR3)

1 h2(m2n)(S3 1 h2mR2
3 1 h22mT 4

4 1 h2mT2 1 hmR2)

1 h22(m2n)(S2 1 h2mR2
2 1 h22mT 4

3 1 h2mT1 1 hmR1)

1 h2(m2n)(S1 1 h2mR2
1 1 h22mT 4

2 1 h2mT5 1 hmR5)}

F(4)
mn 5

E 1 h25mE8

5!2 o
4

a50
h2maT a

0S10 o
4

b50
h2nbT b

0

5
E 1 h25mE8

5!2
{(S10 1 h2mT 3

1 1 h22mR2
6 1 h2mR9 1 hmT 2

5)
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1 h(m2n)(S9 1 h2mT 3
5 1 h22mR2

10 1 h2mR8 1 hmT 2
4)

1 h2(m2n)(S8 1 h2mT 3
4 1 h22mR2

9 1 h2mR7 1 hmT 2
3)

1 h22(m2n)(S7 1 h2mT 3
3 1 h22mR2

8 1 h2mR6 1 hmT 2
2)

1 h2(m2n)(S6 1 h2mT 3
2 1 h22mR2

7 1 h2mR10 1 hmT 2
1)}

where here and hereafter the subscript m denotes 2m. The bases F(i)
mn can be

combined into irreducible bases cG
mn belonging to the given irreducible that

the irreducible basis should be the eigenstate of a class operator W, which is
called CSCO-I in refs. 3–6, 13, 14. The eigenvalues aG can be obtained by
the characters given by the irreducible representations G [1]

W 5 o
5

j50
(Tj 1 E8T 4

j ), W cG
mn 5 cG

mn W 5 aG cG
mn

aA 5 12, aT1 5 4p21, aT2 5 24p, aG 5 23, aH 5 0 (13)

aE81 5 6p21, aE82 5 26p, aG8 5 3, aI8 5 22

We now calculate the matrix expression of W under the bases F(i)
mn and

diagonalize it.The cG
mn are nothing but the eigenvectors of the matrix expres-

sion of W,

cG
mn 5 N 21/2 o

4

i51
ciF(i)

mn (14)

where N is the normalization factor. In principle, the cG
mn can change the

phase, depending on m and n. One can choose the phases to make the
representation matrices of I 8 coincide with those in the subduced representa-
tions of Dj of SO(3),

D0(R) 5 DA(R), D1(R) 5 DT1(R), D2(R) 5 DH(R) (15)

D1/2(R) 5 DE81(R), D3/2(R) 5 DG8(R), D5/2(R) 5 DI8(R)

The representation matrices of E8 and T0 are diagonal, with the diagonal
elements 61 and hm, respectively, and those of another generator S1 of I 8
are written as

DA(S1) 5 1

DT1(S1) 5
1

!5 1
2p21 2!2 2p
2!2 1 !2
2p !2 2p212
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DT2(S1) 5
1

!5 1
2p !2 p21

!2 21 !2
p21 !2 2p2

DG(S1) 5
1

!5 1
21 2p 2p21 1
2p 1 21 2p21

2p21 21 1 2p
1 2p21 2p 21

2
DH(S1) 5

1
5 1

p22 2p21 !6 2p p2

2p21 p2 2!6 2p22 22p
!6 2!6 21 !6 !6
2p 2p22 !6 p2 22p21

p2 22p !6 22p21 p22
2 (16)

DE81(S1) 5
iq

!5 121 2p
2p 1 2

DE82(S1) 5
iq

!5 12p 21
21 p 2

DG8(S1) 5
iq
5 1

p21 !3 !3p p2

!3 2p2 2p21 2!3p
!3p 2p21 p2 !3
p2 2!3p !3 2p21 2

DI8(S1) 5
iq

5!5 1
2p22 2!5p21 2!10 2!10p 2!5p2 2p3

2!5p21 2!5p !10p !10 !5 !5p2

2!10 !10p !5 2!5p 2!10 2!10p
2!10p !10 2!5p 2!5 !10p !10
2!5p2 !5 2!10 !10p !5p 2!5p21

2p3 !5p2 2!10p !10 2!5p21 p22 2
The normalization factors N and combination coefficients ci are listed in
Table I.

We now obtain the irreducible bases cG
mn satisfying (1). Since I 8h is the

direct product of I 8 and the inversion group {E, P}, the irreducible bases of
I 8h can be expressed as follows:
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Table I. Irreducible Bases in the Group Space of I8

cG
mn 5 N 21/2 o

4

i51
ciF

(i)
mn

h 5 exp(2i2p/5), p 5 h 1 h21, q 5 i(h 2 h21)

cA
00 5 (F(1)

00 1 F(2)
00 1 !5F(3)

00 1 !5F(4)
00 )/!12

G 5 T1 G 5 T2

m n c1 c2 c3 c4 N m n c1 c2 c3 c4 N

1 1 1 2p21 2p 4 2 2 1 2p 2p21 4
0 1 2h21 h2 2 0 2 h22 2h21 2
1 1 h22 h22p 2h21p21 4 2 2 2h hp21 h22p 4
1 0 2h h22 2 2 0 h2 2h 2
0 0 1 21 1 21 4 0 0 1 21 21 1 4
1 0 h21 2h2 2 2 0 h22 2h21 2
1 1 h2 2h2p 2hp21 4 2 2 2h21 h21p21 h2p 4
0 1 h 2h22 2 0 2 h2 2h 2
1 1 1 2p21 2p 4 2 2 1 2p 2p21 4

G 5 G G 5 G

m n c1 c2 c3 c4 N m n c1 c2 c3 c4 N

2 2 1 21 1 3 2 1 2h22p21 2h21p 3
1 2 2h21p 2h2p21 3 1 1 h2 2h2 h 3
1 2 2h2p21 2hp 3 1 1 1 1 21 3
2 2 h h 2h22 3 2 1 2h21p 2h2p21 3
2 1 2hp 2h22p21 3 2 2 h21 h21 2h2 3
1 1 1 1 21 3 1 2 2h22p21 2h21p 3
1 1 h22 2h22 h21 3 1 2 2hp 2h22p21 3
2 1 2h2p21 2hp 3 2 2 1 21 1 3

G 5 H G 5 H

m n c1 c2 c3 c4 N m n c1 c2 c3 c4 N

2 2 !5 p22 p2 12 1 0 h21 h2 2
1 2 h21p21 2h2p 3 2 0 h22 h21 2
0 2 h22 h21 2 2 1 h22p 2h21p21 3
1 2 h2p 2hp21 3 1 1 2!5h2 2h2p22 2hp2 12
2 2 !5h hp2 h22p22 12 0 1 h h22 2
2 1 hp21 2h22p 3 1 1 !5 p2 p22 12
1 1 !5 p2 p22 12 2 1 2h21p21 h2p 3
0 1 2h21 2h2 2 2 2 !5h21 h21p2 h2p22 12
1 1 2!5h22 2h22p22 2h21p2 12 1 2 2h22p h21p21 3
2 1 2h2p hp21 3 0 2 h2 h 2
2 0 h2 h 2 1 2 2hp21 h22p 3
1 0 2h 2h22 2 2 2 !5 p22 p2 12
0 0 !5 !5 21 21 12
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Table I. Continued

G 5 E81 G 5 E82

2m 2n c1 c2 c3 c4 N 2m 2n c1 c2 c3 c4 N

1 1 2i q qp 6 3 3 2i qp 2q 6
1 1 2ih21 h21qp 2h2q 6 3 3 ih2 h2q hqp 6
1 1 ih hqp 2h22q 6 3 3 2ih22 h22q h21qp 6
1 1 2i 2q 2qp 6 3 3 2i 2qp q 6

G 5 G8 G 5 G8

2m 2n c1 c2 c3 c4 N 2m 2n c1 c2 c3 c4 N

3 3 i!5 qp21 qp2 15 3 1 h2qp hq 5
1 3 h21q 2h2qp 5 1 1 i!5h 2hqp21 2h22qp2 15
1 3 h22qp h22q 5 1 1 i!5 qp2 2qp21 15
3 3 i!5h2 h2qp2 2hqp21 15 3 1 h21q 2h2qp 5
3 1 hq 2h22qp 5 3 3 2i!5h22 h22qp2 2h21qp2115
1 1 i!5 2qp2 qp21 15 1 3 2h2qp 2hq 5
1 1 2i!5h21 2h21qp212h2qp2 15 1 3 hq 2h22qp 5
3 1 2h22qp 2h21q 5 3 3 i!5 2qp21 2qp2 15

G 5 I 8 G 5 I 8

2m 2n c1 c2 c3 c4 N 2m 2n c1 c2 c3 c4 N

5 5 2i5 qp22 qp3 50 5 1 h22qp 2h21q 5
3 5 h21qp21 2h2qp2 10 3 1 2h2q hqp 5
1 5 h22q h21qp 5 1 1 i!5h hqp h22q 10
1 5 h2qp 2hq 5 1 1 2i!5 q 2qp 10
3 5 hqp2 h22qp21 10 3 1 2h21qp 2h2q 5
5 5 2i5 qp3 2qp22 50 5 1 2h22q 2h21qp 5
5 3 hqp1 h22qp2 10 5 3 h21qp2 h2qp21 10
3 3 2i!5 qp q 10 3 3 2i!5h22 2h22q h21qp 10
1 3 2h21qp 2h2q 5 1 3 h2q 2hqp 5
1 3 2h22q h21qp 5 1 3 2hqp 2h22q 5
3 3 i!5h2 2h2q hqp 10 3 3 2i!5 2qp 2q 10
5 3 2hqp2 2h22qp21 10 5 3 h21qp21 2h2qp2 10
5 1 h2q hqp 5 5 5 i5 qp3 2qp22 50
3 1 2hqp 2h22q 5 3 5 2h21qp2 2h2qp21 10
1 1 2i!5 2q qp 10 1 5 h22qp 2h21q 5
1 1 2i!5h21 h21qp h2q 10 1 5 2h2q 2hqp 5
3 1 h22q 2h21qp 5 3 5 h21qp21 2h22qp2 10
5 1 h2qp 2hq 5 5 5 2i5 2qp22 2qp3 50
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cGg
mn 5 221/2 (E 1 P) cG

mn, cGu
mn 5 221/2 (E 2 P) cG

mn (17)

4. APPLICATIONS TO THE ANGULAR MOMENTUM STATES

According to the properties (1), one can obtain the irreducible function
bases by applying cG

mn to any function. As an important application, one can
apply cG

mn to the angular momentum states . j, m&, where the Condon–Shortley
convention is used:

R. j, m& 5 o
j

n52j
Dj

nm(R). j,n&, R P SO(3) or SU(2) (18)

When j is an integer ,, the .,, m& is nothing but the spherical harmonics
Y,

m(u, w). It can be seen from Fig. 1. and (3) that

E8. j, m& 5 (21)2j. j, m&

T0. j, m& 5 hm. j, m&

S5. j, m& 5 o
n

Dj
nm(22p/5, 2u47p/5). j, n&

5 o
n

e2imphm2n d j
nm(2u4). j, n&

S10. j, m& 5 o
n

Dj
nm(2p/5, 2u56p/5). j, n&

5 o
n

einph3m12n d j
nm(2u5). j, n& (19)

S11. j, m& 5 o
n

Dj
nm(0, p, 4p/5). j, m&

5 (21) j2mh2m. j, 2 m&

where d j(u) is the D-function in the angular momentum theory [11] and

cos u4 5 sin u5 5 q/!5, cos u5 5 sin u4 5 qp/!5 (20)

After careful calculation, one can obtain the combinations of the angular
momentum states cG

ml. j, r&, which belong to the m row of the irreducible
representation G of I 8:

cG
ml. j, r& 5 !10/Nd8lr o

n
d8mn{c1drn 1 c2drv(21) j2rh2r

1 !5c3e2iprhr2n d j
nr(2u4) 1 !5c4eipnh3r12n d j

nr(2u5)}. j, n&
(21)

where N and ci are also given in Table I. The d8lr is defined as
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d8lr 5 H1 when (l 2 r)/5 5 integer
0 otherwise

(22)

In the course of obtaining (21), some terms are merged so that the functions
need to be normalized again.

Equation (21) is our main formula. For fixed l and r, under the condition
d8lr 5 1, one can obtain the combinations of the angular momentum states
cG

ml. j, r&, which belong to the m row of the irreducible representation G of
I 8. Different choices of l and r may lead to the combinations vanishing, being
dependent on each other, or being independent. The number of independent
combinations depends upon the number of times that the irreducible represen-
tation G of I 8 appears in the reduced form of the subduced representation of
Dj of SU(2). The latter can be completely determined by the character of the
representation and is listed in Table 2 of ref. 1. The combinations can be
calculated by computer or even by hand. As examples, some combinations
are as follows:

cA
00.0, 0& 5 2!30.0, 0& cT1

m1.1, 1& 5 2!10.1, m&

cH
m2.2, 2& 5 2!6.2, m& cE81

m(1/2).1/2, 1/2& 5 2i2!15.1/2, m&

cG8
m(3/2).3/2, 3/2& 5 i!30.3/2, m&, cI8

m(5/2).5/2, 5/2& 5 2i2!5.5/2, m&

cT2
22.3, 3& 5 24(!3/5.3, 2& 1 !2/5.3, 23&)

cT2
02.3, 3& 5 24.3, 0&

cT2
22.3, 3& 5 24(2!2/5.3, 3& 1 !3/5.3, 22&)

cG
22.3, 3& 5 3!2(2!2/5.3, 2& 1 !3/5.3, 23&)

cG
12.3, 3& 5 3!2.3, 1&

cG
12.3, 3& 5 3!2.3, 21&

cG
22.3, 3& 5 3!2(!3/5.3, 3& 1 !2/5.3, 22&)

cE82
3/23/2.7/2,7/2& 5 2i3!2(2!7/10.7/2, 3/2& 1 !3/10.7/2, 27/2&)

cE8
2

3/23/2.7/2, 7/2& 5 2i3!2(!3/10.7/2, 7/2& 1 !7/10.7/2, 2 3/2&)

cI8
5/23/2 .7/2, 7/2& 5 i!14(!1/50.7/2, 5/2& 1 7/!50.7/2, 2 5/2&)

cI8
3/23/2.7/2, 7/2& 5 i!14(2!3/10.7/2, 3/2& 2 !7/10.7/2, 27/2&)

cI8
1/23/2.7/2, 7/2& 5 i!14.7/2, 1/2&

cI8
1/23/2.7/2, 7/2& 5 2i!14.7/2, 21/2&
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cI8
3/23/2.7/2, 7/2& 5 i!14(2!7/10.7/2, 7/2& 1 !3/10.7/2, 23/2&)

cI8
5/23/2.7/2, 7/2& 5 i!14(7/!50.7/2, 5/2& 2 !1/50.7/2, 25/2&)

Other combinations can be obtained by the same method.

5. CONCLUDING REMARKS

If the Hamiltonian of a system has a given symmetry, the symmetry-
adapted bases are very useful for calculating the eigenvalues and eigenstates.
Generally, the symmetry-adapted bases can be simply obtained from the
irreducible bases in the group space of the symmetry group of the system.
In this paper, we have explicitly presented the expression for the irreducible
bases of I 8 group space. As an important application, the combinations of
the angular momentum states into irreducible basis functions belonging to a
given row of a given irreducible representation of I 8, which are very crucial
for calculating the symmetry-adapted bases, have been presented by a simple
and unified formula, (21). Moreover, it is worthwhile to emphasize that the
method used in this paper is effective for any double point group.
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